(3x^2)-(350x)+7500=0

Simple and best practice solution for (3x^2)-(350x)+7500=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2)-(350x)+7500=0 equation:



(3x^2)-(350x)+7500=0
a = 3; b = -350; c = +7500;
Δ = b2-4ac
Δ = -3502-4·3·7500
Δ = 32500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32500}=\sqrt{2500*13}=\sqrt{2500}*\sqrt{13}=50\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-350)-50\sqrt{13}}{2*3}=\frac{350-50\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-350)+50\sqrt{13}}{2*3}=\frac{350+50\sqrt{13}}{6} $

See similar equations:

| 8j-22=18 | | 3x-53=21 | | F(x)=-3x-9x | | A=70-14.99n | | (Y-5)x4=36 | | 8d-86=88 | | 3v-86=33 | | z/5+32=41 | | 41=1+8k | | x2-2x-440=0. | | 7b=2b+20 | | (x-2)(x+3)=10 | | (x-2)(x+3)=1 | | 6x+-5=-5 | | Un=-3n+2 | | 8(-3x+2)=6)3x-11) | | -3(2x-3)=33 | | 7m-4,36m+4,3=9,83 | | 6x+-9=-9 | | 6x➕8=2x➕4 | | 5-3(x-4=21-5x | | 8(x-5)=-80 | | 5(3x-1)=2(4x-7) | | u=−128u−1=6u | | x2-2x-255=0. | | Z-2×z3+45,63=0 | | 14x-7+2=9-5x | | 3x^2=172 | | (x/6)+8=12 | | 4(2+x=18+2x | | 1/2(x-5)=1/3(x+20) | | 7(x-83)-3=2(x-83)=17 |

Equations solver categories